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On the spin-up and spin-down of a rotating fluid. 
Part 1. Extending the Wedemeyer model 

By PATRICK D. WEIDMAN 
Department of Aerospace Engineering, University of Southern California, Los Angeles 

(Received 29 March 1974 and in revised form 27 March 1975) 

The Wedemeyer model describing the spin-up of a fluid in a rotating cylinder 
is generalized to include the case of spin-down. Attention is focused on spin-up 
and spin-down a t  a finite (constant) acceleration for small Ekman numbers En. 
It is found that when the full nonlinear Ekman suction is included for spin-up 
from rest, the characteristics near the propagating wave front intersect, thus 
yielding an 0(1) velocity discontinuity for the inviscid model. This anomalous 
behaviour is limited to only a small range of Rossby numbers and does not appear 
in any of the spin-down solutions. Transient spin-down velocity profiles in the 
O(Ek) shear layer a t  the cylindrical wall are calculated for the quasi-steady flow 
which occurs for sufficiently small decelerations. Results for impulsive spin-up 
and spin-down between infinite parallel plates are presented and compared with 
the asymptotic solutions given by Greenspan & Weinbaum and Benton. Finally, 
characteristic spin-up and spin-down times are computed for both the contained 
cylinder and the infinite-parallel-plates geometry. 

1. Introduction 
A revival in the study of the spin-up and spin-down of a rotating fluid has been 

motivated by the relatively recent paper of Greenspan & Howard (1963; here- 
after denoted by G & H). They considered small, impulsive changes about a state 
of solid-body rotation of both a contained fluid and a fluid between infinite 
parallel plates; the initial angular velocity was Q and the final angular velocity 
Q( I + E ) ,  where e is a Rossby number which measures the degree of nonlinearity. 
G & H have shown that the solution for the linearized problem ( E  < I )  for small 
Ekman number E, = v/h% gives a spin-up time scale O(E$ Q-l), where F, is the 
characteristic dimension along the axis of rotation and v is the kinematic viscosity 
of the fluid. In  this limit the spin-up time is much longer than the Ekman-layer 
formation time O(i2-l) but considerably shorter than the time O(E~lt2-1) for 
viscous diffusion, and hence the mechanism for spin-up of the interior fluid is one 
of vortex stretching. Also, the linearized analysis shows that the spin-up and 
spin-down times are equal. 

Succeeding papers by Wedemeyer (1964), Greenspan & Weinbaum (1965) and 
Benton (1973) have provided results which, in one way or another, account for 
nonlinear effects. An excellent review of these and other studies of the spin-up 
problem is given by Benton & Clark (1974), and hence we shall not discuss them 



686 P. D. Weidman, 

in detail. Nevertheless, it is worthwhile to mention some important results. 
Greenspan & Weinbaum (to be denoted by G & W) included nonlinear effects by 
an expansion in terms of e and presented solutions valid for moderate Rossby 
numbers. Benton (1973), using the method of matched asymptotic expansions, 
has presented solutions for the fully nonlinear problems of spin-up and spin-down 
between infinite parallel plates. However, his approximate analysis of the non- 
linear Ekman flow must likewise limit these results to moderate Rossby numbers. 
The important conclusion drawn from both analyses is that the nonlinear inter- 
actions are small compared with the basic viscous processes and thus the spin-up 
time scale remains O(E$ PI). Moreover, both investigations clearly demonstrate 
that nonlinear spin-down takes longer than nonlinear spin-up for the same 
effective Rossby number. 

Motivation for the present investigation stemmed from the work of Wedemeyer 
(1964), who used a unique approximate method to formulate the hitherto un- 
solved problem of impulsive spin-up from rest of a contained fluid. Wedemeyer’s 
work will be discussed in some detail in later sections since the assumptions 
inherent in his model apply to the present analysis as well. In  essence, Wedemeyer 
has shown that spin-up in a cylinder is characterized by a cylindrical wave front 
(a discontinuity in shear) which propagates from the cylinder wall to the central 
axis. During this time the entire volume of fluid ahead of the wave front is 
eventually pumped through the Ekman layers and ejected into the region behind. 

Many authors have since modified or extended Wedemeyer’s model. Greenspan 
(1968), for example, has extended Wedemeyer’s work to include spin-up from an 
arbitrary initial angular velocity for a general class of axially symmetric con- 
tainers. Venezian (1969, 1970) has also adopted the Wedemeyer model and con- 
sidered in detail the flow in the neighbourhood of the wave front for spin-up from 
rest. More recently, Watkins & Hussey (1973, 1976) have carried out the lengthy 
integrations of the full viscous Wedemeyer equation for several moderately small 
values of E,. All of the above studies confirm that the spin-up time scale is still 
O(E,i Q-l) for cylinder aspect ratios of order unity, thus corroborating G & IV’s 
conclusion that the nonlinear effects are indeed small. 

The present investigation was initiated to offer a direct comparison between the 
predictions afforded by the Wedemeyer model (part 1)  and experiment (part 2).  
Also, we consider the more general problem of finite angular acceleration, of 
which impulsive accelerations are a limiting case. In $ 2  a generalized form of 
Wedemeyer’s equation is developed to include spin-down. Solutions for specific 
cases of spin-up and spin-down in a cylindrical container are given in $9 3 and 4, 
respectively. In  $5 we present results for impulsive spin-up and spin-down 
between infinite parallel plates and concluding remarks are given in 0 6. 

2. The generalized Wedemeyer model 
We shall use an inertial reference system whose origin is located at the centre 

of the cylinder. The natural co-ordinates are cylindrical (r, 8, x )  and the respective 
velocity components will be denoted by (u, w, w). The vertical (2) axis is aligned 
along the geometric axis of the cylinder, which itself is coincident with the 
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rotation vector Qk. The flat lids are located a t  x = f &h and the cylindrical wall 
lies at r = a. We restrict ourselves to the case E ,  < 1, where E ,  = v/i2h2 is the 
appropriately defined Ekman number. Since the Ekman-layer thickness Sis equal 
to (v/i2)4, one concludes that S/h < I and consequently the horizontal boundary 
layers are confined to a thin region near the top and bottom lids. 

The equation derived by Wedemeyer describing the axially symmetric incom- 
pressible fluid motion is 

The formal perturbation expansion in powers of EA presented by Greenspan 
(1968, pp. 162-163) shows that the O(1) motion satisfies the Taylor-Proudman 
theorem and, consequently, z1= v(r,t) only. It is then evident from (2.1) that 
u = u(r,  t )  only, and, in particular, one would like to have an equation relating 
u and v to complete the problem formulation. An approximate relationship for 
spin-up was given by Wedemeyer; this approximation will now be generalized 
to include the case of spin-down. 

Wedemeyer used the steady Ekman flux calculations of Rogers & Lance (1960) 
for fluid in solid-body rotation (a) above an infinite rotating disk (Q) to determine 
the local suction into the Ekman boundary layers for the unsteady problem of 
spin-up within an enclosed cylindrical container. Rogers & Lance (henceforth 
referred to as R & L) computed the nonlinear boundary-layer flow for eight values 
of s = w/Q in the range 0 < s < 1 and for eight values of cr = Qlw in the range 
0 < cr < 1, thus covering the entire gamut of relative velocities from K&rm&n 
flow (s = 0)  to Bodewadt flow (cr = 0) .  Their results for the Ekman suction can 
be expressed in the form 

(2.2) i -vKBf(s ) ,  for 0 < s < 1, 
wffl(t) = ( -vh*g(cr) ,  for O 6 cr < 1, 

where the functionsf(s) and g(a)  are obtained by drawing a smooth curve through 
the computed points as indicated in figure 1. The blowing or suction wffl(t)  is 
written as a function of time since we now apply (2.2) to the unsteady flow 
problem. R & L’s computations have been confirmed directly a t  one intermediate 
point in the range 0 < s < 1 by Benton (1968). Furthermore, Carrier (1971) has 
obtained an approximate (implicit) formula for the Ekman suction which is in 
surprisingly close agreement with the calculations of R & L in the entire range 
0 6 cr < 1.  Thus there seems to be little doubt about the accuracy of their 
numerical calculations, in spite of the anomalous non-monotonic dependence of 
the Ekman suction on Rossby number near s = 0. 

We make the following assumptions when applying R & L’s results to spin-up 
or spin-down in a cylindrical container. 

(i) The flow is quasi-steady. 
(ii) The finite geometry does not affect the boundary-layer flux. 
(iii) The fluid is locally in solid-body rotation. 

The quasi-steady approximation (i) is adequate because, as pointed out by 
Benton (1973), time plays a passive role. Indeed, even in response to a nonlinear 
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FIGURE 1. Ekman suction as a function of s (upper curve) and c (lower curve). 0,  calcula- 
tions due to Rogers & Lance; --, fitted curve ; - - -, Wedemeyer's approximation. 

change in wall speed, Benton (1966) has shown that the Ekman layers form in 
a time O(Q-l). Thus on the spin-up time scale O(E;*CF1), the boundary-layer 
flow is steady in the limit .Efi --f 0. In  (ii) we are assuming that, to leading order, 
the presence of the vertical walls does not alter the Ekman pumping. Linearized 
theories (cf. G & H; Stewartson 1957) indicate that the influence of a vertical 
wall or a split between differentially rotating disks is felt (directly) in a relatively 
narrow layer of thickness O(Ehh) a t  most. But the indirect influences are signifi- 
cant since they bring about cellular flow patterns which would not otherwise 
exist. We presume that qualitatively similar results will prevail in the nonlinear 
case. Perhaps assumption (iii) is the most restrictive; it is equivalent to saying 
that the mass flux along horizontal boundaries depends only on the local differ- 
ence in vorticity across the Ekman layer. It may well depend on the gradients of 
axial vorticity when such gradients are large. In  this event the interior flow would 
no longer be locally controlled by the Ekrnan layers. 

Conservation of mass across a cylindrical sheet spanning the end plates requires 

U(T,  t )  = (r/h)%#), (2.3) 

and this in conjunction with (2.2) provides the desired relation u = ~ ( 8 ) .  Com- 
bining these results gives the following nonlinear partial differential equations 
for the O( 1) interior fluid motion: 
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0.88446 
1.07258 

23.88193 

38.23662 

4.88674 

- 9.44264 

- 38.45380 

- 21.06589 

- 1.36961 
1.81302 

1.86910 

5.41466 

0.90157 

- 0.83396 

- 4.31832 

- 3.47646 

TABLE 1. Coefficients for the polynomial curve fits forf(s) and g ( r )  
according to (2.6) 

For spin-up the expression Q*f(s) is used; this is the equation derived by 
Wedemeyer. For the case of spin-down the appropriate term is w*g(a). The form 
of s and (T depends on the boundary conditions. For impulsive accelerations, s and 
cr will be functions of r and v alone, but in the event that the walls are accelerated 
at  a finite rate, they will also be explicit functions of time. Solving (2.4) gives the 
interior azimuthal velocity and consequently u can be determined from (2.3). The 
axial velocity is then calculated from the equation of continuity 

z a  
w(r,z , t )  = ---(ru). 

r ar 

This ‘integral method ’ effectively separates the details of the Ekman boundary 
layer from the geostrophic interior, linking them only by the suction which drives 
the flow. In  other words, (2.2) provides us with a nonlinear Ekman compatability 
condition. Though some details of the fluid motion are lost (e.g. the inertial 
oscillations in the fluid interior), this approximate method has the capability of 
including the full nonlinear Ekman-layer behaviour in the limit E,  -+ 0. 

2.1. CurveJits of Rogers & Lance’s data 

For the case of spin-up from rest, Wedemeyer further simplified the convection 
term in (2.4) by approximating the Ekman suction with the linear fit indicated 
in figure I. This gives a maximum error of the order of 15 %. 

In  the present study we seek more accurate approximations for the curves 
f ( s )  and g(cr) in order to include the full nonlinear behaviour of the Ekman layers. 
Very accurate least-squares polynomial fits are given by 

where 0 < s, (T < 1, and the coefficients an and b, are listed in table 1. The poly- 
nomial approximations have a standard deviation of less than 2 x and are 
everywhere smooth and continuous. 

In  addition to these exact curve fits, simple analytic functions were sought 
which perhaps could lend themselves to useful closed-form solutions to the 
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differential equations. No such expression could be found for f(s), but g(a)  can 
be well approximated by a rational function. This expression, written in terms 
of s = Ila, is given by 

g(s) = - K(s  - I)/@ + b ) ,  (2.7) 

where K = 1.36961 and b = 0-35300. Equation (2.7) exactly satisfies the no- 
pumping condition a t  s = 1 as well as the Bodewadt blowing condition a t  s = CO. 

At the intermediate points the approximate curve is everywhere within 0.8 % 
of R & L’s calculations. 

The approximations forf(s) and g(a) cited above cover the entire range [0, 11 
of the independent variables, a necessary condition when the initial or final state 
is one of quiescence. However, a linear approximation about s = a = I will prove 
sufficient for some flows, even when there is a large difference between the initial 
and final rotational speeds. For example, if the cylinder is accelerated or decele- 
rated a t  a slow enough rate, the local fluid velocity is expected not to lag far 
behind that of the wall and, consequently, the local Rossby number will remain 
small. In  this case we shall appeal to the linear approximations 

f(s) = k(1 -s), g(a) = k(fT- I ) ,  (2.8) 

where the constant k: is chosen to give the best fit over the range of interest. We 
note that ii = 1 corresponds to linearized theory. 

3. The problem of spin-up 
It is convenient to begin with a discussion of impulsive spin-up and briefly 

present the results obtained from Wedemeyer’s linear Ekman-suction approxi- 
mation for later reference. We then show the effects of including the full nonlinear 
behaviour of the Ekman layer and proceed to the case of spin-up at constant 
acceleration. For the remainder of the presentation, variables with an asterisk 
represent dimensional quantities and those without an asterisk are the 
corresponding non-dimensional variables. 

3. I. Impulsive spin-up 
We assume the cylinder and fluid to be initially in a state of solid-body rotation 
IRi and the speed of the cylindrical container to be impulsively increased to IRf . 
Then s = w*/sZ, and the inviscid portion of (2.4) can be written as 

The dimensional variables v*, r* and t* are then normalized with the charac- 
teristic values aQf, a and IR7l respectively. In  terms of the circulation I’* = r*v*, 
the non-dimensional form of (3. I )  is 

at 
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with the corresponding boundary conditions 

r(r,O) = rv, 0 < r < 1, (3.3 a )  

r ( i , t )  = 1, t > 0, (3.3 b )  

where En = v/h2Qf is the Ekman number and y = QJSZ,. Equation (3.2), which 
is in the standard form for solving by the method of characteristics, shows that 
the circulation is conserved along characteristic paths defined by 

dr/dt = - & rf(ro/r2), (3.4) 

where Po is the constant value of the circulation. The characteristics constitute 
an expansion fan centred on r = 1 and t = 0 with, since f(s) 2 0 everywhere, 
their paths running towards decreasing r .  In  general the characteristics would 
have to be determined by numerical integration. However, if we assume 
f (s) = k( 1 - s), the following closed-form solution is obtained (cf. Ingersoll & 
Venezian 1968 or Venezian 1969): 

r ( r ,  t )  = yr2/(ro(t))z in region I, r Q ro(t), (3.5a) 

r ( r ,  t )  = (r2 - exp ( - 2/3, t ) ) / (  1 - exp ( - 2,4 t ) )  in region 11, r 2 ro(t), (3.5 b )  

(3.54 

The dividing characteristic, which will also be referred to as the wave front, 
propagates from the cylindrical wall to the final radial position (ro)f = yl; if y = 0 
we have spin-up from rest and the front eventually converges on the axis of the 
cylinder. The fluid ahead of the wave front spins up like a solid body while con- 
serving angular momentum, and, although the angular velocity is continuous 
across r,,(t), its derivative is not. Consequently, the dividing characteristic 
supports a discontinuity in shear. The radial velocity is likewise continuous across 
the front, but the vertical velocity w is discontinuous and in fact changes sign 
there. A direct consequence is that the Ekman suction, while being convergent 
ahead of ro(t), is divergent in the region behind. Moreover, since it can be shown 
that u = dro/dt a t  the dividing characteristic, the front is actually a contact 
surface. The boundaiy conditions for u and v are satisfied a t  r = 1, but the vertical 
velocity determined from ( 2 . 5 )  is discontinuous at the cylindrical boundary. 

3.2. Vertical boundary and free shear layers 

Retention of the O(E,) viscous terms in the azimuthal momentum equation for 
impulsive spin-up gives 

where A = h/a is the cylinder aspect ratio. With a change of co-ordinates such 
that the wave front is located at a constant value of one of the independent 
variables, Venezian (1970) analysed the structure of the propagating free shear 
layer for the velocity profiles obtained by Wedemeyer. Under the assumption 

44-2 
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AEA < 1, he was able to reduce (3.6) to the one-dimensional Burgers equation, 
the solution of which smooths out the shear discontinuity in a thickness O ( E i  h) .  
The transition layer grows with time owing to both convective and diffusive 
processes. All the velocities vary continuously through the shear layer and so an 
embedded inner layer is not required. 

Consider now the flow near the cylindrical boundary. It is a simple matter to 
show that the full viscous equation for the linear approximation to f (8)  is satisfied 
by the inviscid solution (3.5b), since the bracketed term in (3.6) vanishes identi- 
cally. Hence an O(Eh)  vertical boundary layer, generally required to smooth out 
O(1) discontinuities in shear or velocity, does not appear, although an attached 
O(Eh) layer is necessary in order to make the vertical velocity continuous a t  the 
wall. In  the linear analysis of G & H, the double layers remain attached to the 
wall, but for the nonlinear case Venezian has shown that the O(EA) layer pro- 
pagates away from the wall along the dividing characteristic ro(t). The conclusion 
is, therefore, that the nonlinearity separates the double structure of the vertical 
boundary layer. 

3.3. A closer look at the wave front 
In  an attempt to obtain the ‘exact’ solution for the inviscid flow in the interior, 
the paths of the characteristic curves defined by (3.4) were determined numeri- 
cally using (2.6) for the fully nonlinear Ekman suction. These calculations gave 
the unexpected result that the characteristics always intersected in the region of 
the wave front for spin-up from rest. It was eventually guessed that this behaviour 
was due to the non-monotonicity of the functionf(s). That this conjecture is in 
fact true can be seen from the following analysis. 

Integration of (3.4) for an arbitrary (well-behaved) f(s) satisfying the initial 
condition r = 1 at t = 0 gives 

With the change of variables x2g = r0, the characteristic curves satisfy the 
relation 

and the envelope of intersecting characteristics, if it  exists, is given by (see, for 
example, Courant 1936, pp. 172-173) 

dH(r,  t ;  r0)/dt = 0. 

Differentiation of (3.7) with the aid of Leibnitz’s rule shows that this condition 
can be satisfied if 

which is simply a statement of non-monotonicity. Since 0 < r < 1 we must have 
ro/r2 > ro as depicted in figure 2. Actually, since y < r0 < 1, condition (3.8) will 
be satisfied only when y < sl, where s1 is the position of the maximum Ekman 
suction. From the least-squares fit, s1 = 0.075 andf(s,) = 0.921. In  particular, 
the characteristics will always intersect for spin-up from rest, and consequently 
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FIGURE 2. Sketch showing the values of s for which characteristic paths will intersect for 
impulsive spin-up. The maximum a t  s1 = 0.075 isf(sl) = 0.921. 
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FIGURE 3. Velocity profiles for impulsive spin-up from rest of an inviscid fluid with Enat* 
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FIGURE 4. Characteristic paths and boundary values for spin-up 

at constant acceleration. 

the wave front is characterized by a velocity discontinuity instead of the shear 
discontinuity predicted in Wedemeyer's approximate analysis. 

Owing to this additional complication, the correct inviscid solution near the 
wave front becomes much more elusive. We shall postpone a discussion of this 
problem and simply present in figure 3 a typical set of velocity profiles for spin-up 
from rest, ignoring the correct behaviour near the wave front; the double-valued 
solution is a direct consequence of the non-monotonic Ekman flux curve used in 
the mathematical model. Also included in figure 3 are the results obtained by 
Wedemeyer for his linear approximation to f (8). 

3.4. Spin-up at constant acceleration 
Now consider the case in which the cylinder is uniformly accelerated at a constant 
rate a between the initial and final angular velocities. During the acceleration 
phase s = w*/ (  Qi + at*), and normalizing the dimensional variables (cf. $3.1) with 
the characteristic quantities a h ,  a and a-4, we arrive at the inviscid circulation 
equation 

(3.9) 
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where 7 = (t + ti)$ is the transformed time and t$ = Q,/a*. Here the Ekman num- 
ber is defined as E, = v/h2a4. The boundary conditions to be satisfied are 

qr, t i )  = r2ti for o G r G I ,  (3.10a) 

r(i,7) = 7 2  for 7 2 ti", (3.10 b )  

As in the impulsive case, the solution requires that the circuIation remain con- 
stant (r,) along characteristic paths now given by 

dr/d7 = - 2Ek r77( ro/r272), (3.11) 

and again we see that all the curves run to the left. Boundary conditions and 
typical paths qualitatively corresponding to the linear approximation to f (s )  are 
sketched in figure 4. The horizontal line a t  7 = t j ,  where tf = Qf/ag, marks the 
end of the acceleration period and thus (3.9) describes the motion only in regions 
I a and I1 a. The characteristic paths are then extended into regions I b and I1 b 
with the aid of the impulsive spin-up equation, using the calculated solution 
along 7 = t j  as initial conditions. Numerical integrations again revealed that the 
characteristics intersect for acceleration from rest in the fully nonlinear case. 
That this must always happen could not be proved analytically because the 
variables in (3.  I I )  cannot be separated. The result seems reasonable, however, 
since the entire non-monotonic curve is necessary to describe spin-up from rest, 
regardless of the manner in which the boundaries are accelerated. 

3.5. Constant acceleration solution for the linear approximation to f(s) 

With the proper choice of k, the linear approximation for the Ekman suction can 
be made quite good, even for moderate Rossby numbers as large as E = 1 - s = 0.8. 
In this case, (3.9) can be written as 

(3.12) 

where p2 = 2kE:. In  regions I a, b the boundary conditions allow separation of 
variables and explicit solutions are obtained in terms of a simple quadrature. 
This is not the case in regions I1 a, b, where the characteristic paths must first be 
determined. We shall simply present the solutions, which the reader can verify 
by direct substitution. 

In  region I a ,  r 6 r0(7), 

(3.13) 

and in region I1 a, r 2 ro(7), 

r = ro = 7q, ti G .; G t f ,  (3.14 a )  

along the characteristics 

r2(7) = exp ( - ~ 7 ~ )  [exp ( - CT?) + 3c*721(r(ch) - I(cbl)}]. (3.14 b )  

In  the above expressions, c = QP2, and the integral is given by 
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1.0 I I I I I I I I I 

0 0.2 0.4 0.6 0.8 

r = .*la 

FIQURE 5. Velocity profiles for spin-up from rest at constant acceleration 
with a*t* as a parameter; E,  = 9.82 x 

The dividing characteristic r0(7) is found by setting 71 = tf in (3.14). Once I@) is 
evaluated, the circulation at each position and time during the acceleration phase 
can be determined. 

For the post-acceleration period the cylinder walls rotate a t  constant angular 
speed Qf and so s = w*/Qf.  Thus we use (3.1) for impulsive spin-up, only now the 
non-dimensionalization is carried out with the same characteristic quantities as 
are used for non-dimensionalization in this section, namely aia, a and a-9. The 
resulting equation for the linear approximation to f(s) is then 

(3.15) 

where P3 = kEa/t). Denoting the initial time as to = t f - t i ,  we obtain the initial 
conditions 

r (r , t0 )  = rzG(tt)  = r2go for ro(t) 6 r G 1, 

7 = 71(5), r = 5 along t = to for 0 6 r < ro(t), 
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which are calculated from (3 .13)  and (3.14). With this notation the post- 
acceleration solution in region Ib, r < ro(t), is given by 

r ( r , t )  = r2tf 90 (3 .16 )  
go - (90 - t f  1 exp { - 2P3$(t - to)> 

and in region I1 b, r b ro(t) we have 

r = ro = 7:, ti G .4 6 t f ,  
along the characteristics 

( 3 . 1 7 ~ )  

(3.17 b) 

The dividing characteristic r,(t) carries the circulation 74 = ti and its final radial 
position, 

is found by letting t - tm  in (3.17b).  
Typical velocity profiles during the acceleration period for spin-up from rest 

according to (3 .14)  are presented in figure 5. The full nonlinear solution gives 
qualitatively similar results, except that the velocity discontinuity appears in 
lieu of the shear discontinuity. Interestingly enough, figure 5 shows that the 
angular velocity of the interior fluid is continually catching up with the angular 
speed of the walls, even though the cylinder does not stop accelerating. We note 
that the general discussion concerning the vertical boundary and free shear 
layers for impulsive spin-up given in $3.2  applies equally well to spin-up a t  
constant acceleration. 

@ O ) f  = tiPf = (Qi1Qf) t  

4. The problem of spin-down 
We consider now the unsteady motion of a fluid spinning down from an initial 

state of solid-body rotation Qi. The model equation is (2 .4 )  with the Ekman 
suction given by w**g(a) since now O* > Q. As will be shown presently, the full 
O( 1)  solution necessitates a consideration of the viscous boundary layer a t  the 
cyIindrica1 wall. Thus, in addition to the interior solutions, we obtain velocity 
profiles near the wall by integrating the full viscous equation for the special case 
of quasi-steady spin-down. 

Since the rational-function curve fit (2 .7 )  reproduces R & L's numerical compu- 
tations so well, we shall not resort to the exact polynomial curve fit as determined 
by the method of least squares. 

4.1. Impulsive spin-down 

For impulsive spin-down to the final angular velocity SZ,, we have s = w * / Q f .  
Inserting (2 .7 )  into (2 .4 )  and normalizing v*, r* and t* with Qia, a and Qyl 
respectively, one obtains the inviscid equation of motion 
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withp = Qf/Qi andp, = KEA, where En = v/h2Qi. The boundary conditions are 

r(r,O) = 9-2, 0 < r < 1, (4.2 a )  

r ( i , t )  = p, t > 0. (4.2 b)  

Now, since g(rr) < 0 everywhere, the characteristic curves for (4.1) all run 
towards increasing r. In particular, the vertical shear layer identified with the 
dividing characteristic emanating from r = i tries to propagate outside the 
cylindrical boundary, but since this is physically impossible it remains attached 
there. A second consequence is that the entire body of fluid in the cylinder remains 
in region I, and one can always find a solution of the form r (r ,  t )  = r2F2(t) as long 
as the initial condition is one of solid-body rotation. Inserting this product 
into (4.1) gives dF -+p4F2(?) FZ-p = 0, 

dt F i-bp (4.3) 

with (4.2 a)  providing F(0)  = 1. The integration is readily performed with the aid 
of partial fractions, however the solution, 

can only be expressed as an implicit function of time. As expected, the boundary 
condition F = pt at the wall cannot be satisfied and thus we anticipate an O(E$J 
vertical shear layer. An explicit solution for spin-down to rest is obtained by 
taking the limit of (4.4) as p+O. In this case the circulation 

r(r, t )  = r2/(  i (p = 0)  (4.5) 

is seen to approach its final state algebraically, rather than exponentially as 
in (4.4). 

The solution for the linear approximation to g(cr) is included in (4.4) above, 
but we now set b = 0, replace the constant K with k according to (2.8), and write 

= kEA. With this simplification the circulation can be written explicitly as 

This impulsive spin-down solution for the linear approximation to g(rr )  looks 
quite different from the impulsive spin-up solution (3.5 a )  for the linear approxi- 
mation tof(s). However, in the limiting case 6 = (1 -p)  = (I  - y )  3 0, both solu- 
tions reduce to the linearized (long time) result given by G & H, provided we 
set k = 1. 

4.2. Spin-down at constant deceleration 
When the cylinder is decelerated a t  a constant rate we have s = u*/(Qi-cct*), 
where cc is the rate of deceleration. Scaling the variables with &a, a and at, we 
obtain the dimensionless equation of motion 

ar --p5ra(-) r - r r 2  ar -;i;; = 0, 
87 I? + brr2 (4.7) 
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with the associated boundary conditions 

r (r , t i )  = +ti, o r G 1, (4.8a) 

r(i,q = 7, ti 2 r >  0, (4.8 b )  

where r = ti-t is the shifted time and p5 = KE:. Both E, and ti retain the 
definitions given in $3.4. We separate variables by writing r ( r ,  r )  = r 2 T 2 ( 7 )  and 
obtain the ordinary differential equation 

d 9  9 2 - T  

dr  & +b7 
- - p 5 P  (-) = 0, (4.9) 

where 9 must satisfy the initial condition T ( t J  = t j .  
Although no closed-form solution of (4.9) could be found, a more fortunate 

circumstance prevails when g ( v )  is linear. In  this case we set b = 0 in (4.9) and 
obtain the Ricatti-type equation 

d9/dr-ppB(F2-r) = 0, (4.10) 

where now p6 = EE; in accordance with (2.8). With appropriate transformations 
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(4.10) can be reduced to the linear Airy equation, and the resulting solution for 

where 

(4.11) 

Ai and Bi are the tabulated (cf. Abramowitz & Stegun 1965, pp. 475-478) Airy 
functions of the first and second kind, respectively. In  the above a prime denotes 
differentiation with respect to the argument. 

Numerical solutions of the full nonlinear equation (4.9) showing the effect of 
the deceleration rate are presented in figure 6. Here time is non-dimensionalized 
by t z  = Q2,/a, which is the time it takes for the cylinder walls to come to rest. The 
circulation determined by numerical integration of (4.9) or from (4.11) is, of 
course, valid only until the cylinder reaches its final steady speed SZ,, where 
Q2, > Q, 2 0. The approach of the fluid motion to the final state is given by the 
impulsive spin-down solution. If the angular velocity of the fluid determined a t  
the end of the deceleration period is denoted by SZ,, then the post-deceleration 
solution is given by (4.4) or (4.6) with SZ, everywhere replaced by Qo. 

4.3. Boundary layer at the cylindrical wall 
Although all velocity components in the inviscid solutions for spin-down are 
discontinuous at the cylindrical boundary, the only O( 1) discontinuity is in the 
azimuthal velocity. We expect a boundary-layer thickness O(Eh) and, as this is 
many times larger than the Ekman-layer thickness, we assume that the local 
approximation for the Ekman suction is still valid. Hence the O(1) circulation in 
the boundary layer should be adequately described by the full viscous equation 
(2.4). 

It is well known (cf. Briley & Walls 1971) that for E, 4 1 the fluid particles 
near the cylindrical wall will rapidly experience a centrifugal instability for finite 
amplitude impulsive spin-down. If the cylinder spins down over a finite period of 
time, one would expect the onset of the instability to be delayed, and in the limit 
of very slow deceleration the flow may never become unstable. With this motiva- 
tion, it seems worthwhile to solve for the O( I )  velocity in the boundary layer for 
these ‘ quasi-steady ’ flows. 

We begin the analysis by writing the full viscous equation of motion (2.4) in 
terms of the local angular velocity w* = v*/r*. Following the development in 
§ 4.2, one obtains the non-dimensional equation 

and the angular velocity in the boundary layer must match up with the interior 
flow as well as satisfy the no-slip condition a t  the wall. These conditions are 

(4.13) written as 
w(r,  T )  - + W ~ ( T )  = F~(T) ,  dw/dr(r, 7 )  -+ 0, 

at the interior, and W ( 1 , T )  = 7,  ti 2 7 2 0, 
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where F ( r )  satisfies (4.9) for the interior (subscript I )  fluid motion. We proceed 
by scaling the dependent variable in a manner appropriate to a boundary-layer 
analysis, namely 

wB(r ,r )  = "-%a11 - @--7 - 0 - 7  (4.14) 
uI-uwa11 01-7 9(7)' 

and the subscript B denotes 'boundary layer'. The unsteady term in (4.12) 
written in terms of the boundary-layer variable becomes 

amla7 = 1 +qwB+9w;j,  (4.15) 

and here the prime represents partial differentiation with respect to r .  From the 
definition (4.14) we see that wB is constant in time, both a t  the wall and in the 
fluid interior, hence wIg = 0 at these end points. We assume that the local fluid 
acceleration lies between its value at the wall and a t  the fluid interior, hence 

w; Q w f  6 1. (4.16) 

The interior solutions displayed in figure 6 show that for sufficiently slow decelera- 
tion rates (in this case 01 5 0.9rad/s2) w; 21 1 during the major portion of the 
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spin-down time (t*/tz  2 0.1). From (4.16) we also obtain w' N 1, and thus both the 
non-constant terms in (4.15) are small compared with one. We note that, whereas 
both $u& and $lug vanish at the wall, the former returns to zero in the interior 
while the latter approaches w; - 1 + 0; of these two small terms we choose to 
neglect q5w; in order to make the side-wall problem tractable and then use the 
experimental results to check the theory. In  this approximation the fluid accelera- 
tion varies linearly with w between its correct values at the end points, and the 
neglected term is then a correction to this linear dependence. Experiments (to be 
presented in part 2 )  indicate that this approximation is good at higher decelera- 
tion rates and even during the initial stage of spin-down, but there seems to be no 
easy way to ascertain this result a priori. I n  the limit of impulsive spin-down, 
however, this linear dependence cannot hold since the fluid acceleration 
approaches infinity. 

Adopting the approximation described above, we fmd that (4.12) takes the 
form of an ordinary differential equation: 

where r has been replaced by r1 to exemplify the fact that the flow is quasi-steady . 
Details of the numerical integration technique used to match the solution of 
(4.17) with the interior flow are given in the thesis of Weidman (1973). In  figure 7 
we present some velocity profiles for selected times f = t*/tz during the decelera- 
tion period. The numerical results show that the boundary layer (based on 
O - T ~  = 0-99(wI-r,)) grows rapidly by diffusion to a thickness of order hEh, 
where Qi is used to calculate the Ekman number. The side-wall layer reaches 
a maximum near i? = 0-15 and then gradually decreases to about half its peak 
value when the cylinder comes to rest. The radial velocity computed from (2.3) is 
continuous throughout the vertical shear layer, but the axial velocity remains 
discontinuous at r = 1. 

5. Impulsive spin-up and spin-down between infinite parallel plates 
The Wedemeyer approach is actually best suited to solving the problem of 

nonlinear spin-up and spin-down between infinite parallel plates. For this geo- 
metry we can immediately dispense with assumption (ii) in $2. Moreover, the 
von K&rm&n radial dependence for infinite parallel plates ensures that assump- 
tion (iii) will always be satisfied. Finally, in the limiting case En-+ 0, the quasi- 
steady approximation (i) is exact. 

We use the same scaling of variables as in $$3.1 and 4.1 for impulsive spin-up 
and spin-down. After separating the radial dependence, we find the general 
solutions 

7 = 2EhQ,t* = (spin-up), (5.1) 

* ax 
T = 2EhQZit* = (spin-down). 
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The non-dimensional time 7 has been chosen to be identical to that used by G & W 
and Benton (1973) in order to facilitate a comparison of results. Equations (5.1) 
and (5.2) were integrated for various values of y and p respectively. The poly- 
nomial expressions (2.6) were used in the integrations since they represent the 
best possible fits to R & L’s data, although the closed-form solution (4.4) gives 
almost identical results for impulsive spin-down. The solution curves are given 
in figures 8 and 9 along with the results of G & W and Benton (1973). 

Although Greenspan & Weinbaum state that their theory should be limited to 
moderate Rossby numbers, we see from figure 9 that they provide a reasonable 
approximation a t  larger Rossby numbers in the case of spin-down. Their solution 
for spin-up, however, does diverge rapidly for y < 0.4, and in fact becomes non- 
uniform in time. I n  Benton’s analysis, the effects o f  the nonlinear Ekman layer 
are accounted for by a regular perturbation expansion in Rossby number trun- 
cated after the quadratic term (an approximation introduced to treat exactly 
the more interesting effects of inertial and electromagnetic nonlinearities in MHD 
spin-up). This explains why his solution gives shorter spin-up times and longer 
spin-down times than those given here for the full nonlinear problem. His 
perturbation expansion correctly predicts the positive curvature f ” ( ~ )  for the 
Ekman suction a t  s = I (cf. figure l), but the true curvature continuously 
decreases on either side of this point. Consequently, the perturbation expansion 
overestimates the suction as s+ 0 and underestimates it as s+m. Nevertheless, 
Benton’s solution does point out the tendency towards algebraic decay for spin- 
down to rest, although the true decay rate w N (1 + 4K7)-* is considerably faster 
than his asymptotic solution w N (1 + # ~ ) - l  predicts. 

6. Discussion and conclusion 
We have found that the inviscid solution for the fully nonlinear equation for 

spin-up proposed by Wedemeyer results in an intersection of the characteristics 
describing the wave front for the small range of initial velocities 

0 < Qi/fif < 0-076. 

This phenomena is due to the non-monotonic dependence of the Ekman suction 
on Rossby number and gives rise to an O(1) discontinuity in the azimuthal 
velocity. An analytic description of this sharp velocity transition layer based on 
the present model would require a determination of appropriate ‘jump ’ condi- 
tions and then, in order to determine the position and strength of the disconti- 
nuity, it is evident one would have to employ a shock-fitting technique similar to 
that used in compressible gasdynamics. This procedure would entail a great deal 
of work, perhaps without adding significantly to the physical understanding of 
the problem already given by Venezian (1970). Nevertheless, other than inte- 
grating the full viscous partial differential equation as did Watkins & Hussey 
(1976), this seems to be the only way to determine the speed of the wave front for 
this small parameter range. 

Alternatively, as one of the reviewers of this paper has pointed out, the predic- 
tion of a shock may signify a breakdown of the inviscid Wedemeyer model; 
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FIGURE 10. Characteristic times for spin-up and spin-down between infinite 
parallel disks as a function of Rossby number. 

discontinuous radial gradients violate assumption (iii) in $ 2 ,  and hence the quasi- 
steady pumping given by Rogers & Lance’s data would no longer be appropriate. 
In spite of the problems associated with the inviscid model, the calculations due 
to Watkins & Hussey (1973, 1976) show that any discontinuity which may exist 
is removed when the viscous terms in Wedemeyer’s equation are included. The 
experiments presented in part 2 also show that the flow in the neighbourhood of 
the wave front takes the form of a viscous tongue which protrudes ahead of the 
convective velocity profile. This is consistent with Venezian’s (1 970) analysis, 
which suggests that discontinuities predicted by inviscid theory would be vis- 
cously smoothed in an O(EA) transition layer whose thickness varies with time 
and position. The existence or absence of a velocity discontinuity based on an 
inviscid analysis, however, remains an open question for further study. 

Despite these uncertainties, it is tempting to consider the analogy between the 
spin-up of an incompressible fluid in a cylinder and the dynamics of a compressible 
gas, already noted by Benton & Clark (1974). Whereas the strength of a normal 
shock is given by the pressure jump IAPI/P,, the strength of the wave front for 
impulsive spin-up is given by the Rossby number 8 = lAQl/Q,. Small Rossby 
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FIGURE 11. Residual times for spin-up and spin-down at constant acceleration m. the 
acceleration time of the cylindrical container for e = 1 ; Q = 109 rad/s, E ,  = 9.27 x 

number flows have ‘weak’ fronts of simply a shear discontinuity. In  fact, 
Venezian (1970) has shown that the Burgers equation for compressible flow 
through a weak normal shock also describes the viscous structure of the weak 
front for spin-up. The shear front steepens with increasing E and possibly develops 
into the higher-order velocity discontinuity for E > 0.925. If  this be the case, then 
these high Rossby number flows would be characterized by a ‘strong’ wave front 
according to the inviscid analysis. 

Of practical interest is the time it takes for the bulk of the fluid to spin-up or 
spin-down. We designate ti9 as the elapsed time for which the fluid locally reaches 
99 yo of the change in angular velocity imposed on the boundaries. In  other words, 
the spin-up or spin-down time is defined as 

w*(t&) = 0.99 I Q$ - Q f l  . (6.1) 

For the case of infinite parallel plates, the impulsive spin-up and spin-down times 
are radially independent. In  figure 10 we present the characteristic times calcu- 
lated from (5.1) and (5.2) as a function of the Rossby number E = ]Qt-  Qfl/sZ, 
where Q = max (Qi, Qf). These curves confirm the results of G & W and Benton 
(1973); i.e., the nonlinearity increases the spin-up and spin-down times and non- 
linear spin-up is achieved faster than nonlinear spin-down. The obvious exception 
near E = 1, where the spin-up time rapidly approaches infinity, is due to the 
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singular behaviour of (5.1) as y+ 0. Physically, this corresponds to the fact that 
the interior motion is inviscid and conserves angular momentum, so spin-up from 
rest cannot take place since the initial angular momentum is everywhere zero. 

The results in figure 10 also apply to impulsive spin-up and spin-down in an  
enclosed circular cylinder (in the limit En --f 0 )  if we redefine the characteristic 
time tCg to be that for which every fluid particle has attained 99 yo of the change in 
angular speed of the boundaries. The spin-up time according to (6.1), however, 
has a strong radial dependence. In  figure I1 we display the effect of this radial 
dependence as well as the influence of the acceleration rate for the single case 
e = I .  The residual time tZg - t$ for spin-up and spin-down in the ordinate is 
plotted against the period of acceleration or deceleration t: normalized by 
tgK = E$ Q-l, the ordinary impulsive time scale. Again 0 = max (ai, Qf) and 
the nonlinear expressions (2.6) and (2.7) were usedforf(s) andg(s) in the computa- 
tions. This presentation presumes that the (unknown) detailed behaviour near 
the wave front will not significantly affect the global spin-up time. 

The large difference between the results for spin-up and spin-down in figure 11 
is due to the slow algebraic decay the fluid must always experience for spin-down 
to rest. Obviously, the presence of the cylindrical wall plays a dominant role when 
E = 1;  fluid between infinite parallel plates does not spin-up from rest, but 
figure 11 shows that the bulk of the fluid in a bounded cylinder spins up even more 
rapidly than it spins down. We note that for t z / t gE< 1 the radial dependence 
indicative of impulsive spin-up obtains, but when t$/t& 2 5 the influence 
of the propagating wave front is already forgotten and the approach to steady 
state is nearly that of solid-body spin-up. The transition between these two types 
of flows evidently occurs in the neighbourhood t$/tgK = O( 1) .  As a + 0 the residual 
spin-up and spin-down times also tend to zero, so in this limit t& 3 t:. 
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